

# Context (SOI)

| Risk                                                                         | Probable Cost  |
|------------------------------------------------------------------------------|----------------|
| 1. Unforeseen Conditions                                                     | (\$)<br>\$19.1 |
| Material for Dam filling                                                     | φ25:2          |
| Voids; Plinth, Starter Dam and Culvert                                       |                |
| Additional Slope Stabilisation                                               |                |
| Other Items at risk                                                          |                |
| 2. Improved Resilience                                                       |                |
| Improve drainage beneath the spillway and modify spillway for encounter      |                |
| Additional grout curtain, grout specification and plinth modification to rec |                |
| Waterstops and sealing of the joints in the culvert                          |                |
| 3. Under / not budgeted                                                      |                |
| Mechanical and Electrical not designed or priced at budget                   |                |
| Office, overhead and construction engineering underbudgeted                  |                |
| 4. Self-Help / Savings (budget of -\$1.8m)                                   |                |
| Carpi                                                                        |                |
| Bridges, Fibre, Trees                                                        |                |
| Total                                                                        | <i>\$26.5</i>  |
| Contingency                                                                  | \$3.0          |
| Committed Costs (excludes Budgeted Contingency and Savings)                  | \$99.8         |
| TOTAL EXPECTED COST TO COMPLETE                                              | \$129.4        |



### Agenda

- 1. Context
- 2. Safety (no injuries, incident)
- 3. Construction update (video)
- 4. Construction issues
- 5. Rockfill
- 6. Geosynthetic Membrane
- 7. Spillway
- 8. TDC request to look at any 'shovel ready' opportunities
- 9. Update on Covid-19 implication



#### Meet the WWL Team



Designer (PS-1, PS-4)

**Damwatch Engineering** 

Reviewer (PS-2)

**GHD Engineering** 

Engineer to Contract

Stantec

Contractor (PS-3)

**Fulton Hogan Taylors** 

**Quantity Surveyor** 

Rawlinsons

Contract Law

**Anderson Lloyd** 

Programme

CCCL

Safety

Impac; Intesafety

Accountant

**Findex** 

Banker

ANZ

Auditor

**Audit NZ** 

### Agenda

- 1. Context
- 2. Safety (no injuries, incident)
- 3. Construction update (video)
- 4. Construction issues
- 5. Rockfill
- 6. Geosynthetic Membrane
- 7. Spillway
- 8. TDC request to look at any 'shovel ready' opportunities
- 9. Update on Covid-19 implication



### Construction Issues: Voids



### Construction Issues: Stabilisation



## Rockfill: The Geology Challenge

Embankment trials late December 2019 and early January 2020 identified Rock degradation



Less broken down-<u>Free draining</u>

Heavily broken down-Not free draining

## Rockfill: The Geology Challenge

- Discovering more argillite (mud / siltstone) (~70%) and less greywacke (sandstone) than expected
- Greywacke (sandstone) dispersed amongst predominant argillite. Difficult to salvage. (VIDEO)
- Fissile argillite showing tendency to break along insipient foliations
- Spillway Excavation: "May yield a minimum of 350,000 m3 of rock that will consist of slightly weathered to weathered (Class 1 & 2) greywacke." (2014). Predominantly fissile argillite
- Need to find suitable drainage material from alternative sources (cost)





## Design: Rezoning embankment to manage geology



### Design: Geosynthetic membrane

Replace concrete face with Geosynthetic membrane

- ⇒ Improved **resilience** to settlement and seismic (elasticity), benefit accentuated by softer rock
- ⇒ CO2, Cost and Schedule savings
- ⇒ Easy to repair; performance warranty
- ⇒ Testing demonstrates expected life 50-100 years (robust to UV)
- ⇒ Meets EU and International standards for Health and Environmental impacts

Carpi Ltd: Installed

- 54 New Dams since 1988 (26 larger than Waimea)
- 142 Retrofitted Dams since 1970 (63 since 2010)
- Used on Tekapo Canals (2013 / 2014)









## Design: Spillway modified for improved resilience

Design modifications due to recent learnings from international spillway incidents (international standards)

- ⇒ Oroville (right) failure due to poor drainage and anchoring detailing (pressure beneath fn velocity)
- ⇒ Whaley Bridge (UK) no drainage and poor slab detailing combined with poor maintenance

Modifications for resilience (requested by CIIL):

- ⇒ Drainage reviewed and upgraded
- ⇒ Anchoring design reviewed and upgraded

Additional modifications driven by topography and encountered geology.



# Design: Spillway modified for improved resilience



### Design Update: Other items

#### **Mechanical and Electrical**

- Not designed or priced at commencement of work
- ⇒ Provision Sum challenged
- $\Rightarrow$  To be priced ~3<sup>rd</sup> Quarter 2020

- Progressing detailed design
- ⇒ Switch to single outlet pipe aiming to realise cost savings
- ⇒ Modifications for future hydropower installation



### TDC request: shovel ready opportunities / + investment

#### **Acceleration of work**

- ⇒ Endeavor to meet 2021/2022 season
- ⇒ Employ additional labour / shift work (employment)

#### **Enlarge Reservoir / Powergen**

- Fuse Gate to utilise 2.3m / 5m of flood reservoir
- Activate in event of large flood say 1:10,000 yr AEP (55% - 70% of PMF 1094 m3/s)
- + 1.5Mm³ storage to ~15Mm³ (15%)
  - ⇒ Storage increases powergen utilisation
  - ⇒ Increase resilience to droughts / growth / demand



# Expenditure and progress



## Funding and expenditure

#### **Funding and Spend**

#### Forecast cost & schedule to complete





#### COVID-19

- ❖ WWL incurs cost of Delay or Suspension (no Force Majeure provision in NZ3910)
  - Not covered by insurance
- Supply chain constrained and <u>likely to slow project</u>: Spares, parts, equipment
  - Uncertain how international supply chain recovers
- Productivity <u>likely to be impacted</u> with level-3 operating protocols
  - NZ Construction Industry Standards
- Response to and impact of COVID-19 to be covered in the Final SOI (June)

## More Information



□☆☆☆ん☆

THE BUILD -NEWS LIBRARY -ABOUT US -CONTACT US











Recent events

Construction update



Check out the key facts about the dam

Latest reports and presentations



Richmond Town Hall 9 Cambridge Street Wednesday 25 September 7:00 to 8.30pm





